
Eur. Phys. J. B 14, 145–155 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We study the statistics of meanders, i.e. configurations of a road crossing a river through n
bridges, and possibly winding around the source, as a toy model for compact folding of polymers. We
introduce a Monte-Carlo method which allows us to simulate large meanders up to n = 400. By performing
large n extrapolations, we give asymptotic estimates of the connectivity per bridge R = 3.5018(3), the
configuration exponent γ = 2.056(10), the winding exponent ν = 0.518(2) and other quantities describing
the shape of meanders.

PACS. 64.60.-i General studies of phase transitions – 05.10.Ln Monte Carlo methods –
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1 Introduction

The concept of folding has an important place in poly-
mer physics [1,2]. Considering a polymer chain made of
n identical constituents (the monomers), the entropy of
such a system can be obtained by counting the number
of inequivalent ways of folding the chain onto itself. If the
model of polymer does not take self-avoidance into ac-
count, it is then equivalent to the well-known Brownian
motion. Several more involved models have been proposed
which study the compact folding of a self-avoiding poly-
mer as a Hamiltonian cycle (i.e. a closed, self-avoiding
walk which visits each vertex) on a regular lattice [3,4].
They can also be defined for some kinds of random lat-
tices [5,6], where each configuration is now described by a
system of non-intersecting arches which connect the pairs
of monomers, which are neighbors in the real space.

In the present paper, the compact folding of a poly-
mer chain is modeled by a folded strip of stamps, with
a complete piling of the strip on top of one stamp [7].
It is then equivalent to another model of non-intersecting
arches, the so-called meander problem, which can be sum-
marized by this simple question: in how many ways Mn

can a road cross a river through n bridges, and possibly
wind around the source.

A related problem can be defined by forbidding the
winding around the source (i.e. the river is infinite at the
both ends). It is now equivalent to enumerate the “simple
alternating transit mazes” [8] of depth n; it was also inves-
tigated in connection with Hilbert 16’th problem, namely
the enumeration of ovals of planar algebraic curves [9].

By analogy with some models of statistical mechanics
like random walks or self-avoiding walks, the meanders
can be described in the language of critical phenomena.
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In particular, the asymptotic behavior of meanders when
n is large can be characterized by “critical” exponents.
However the exact enumeration of meanders is particu-
larly complicated: there is no known formula for Mn in
terms of n. By generating all possible configurations, by
hand or with a computer, the beginning of the sequence
Mn can be computed [10–15] exactly. As Mn increases ex-
ponentially with n, the limits of computers are reached
for n ∼ 30 and the estimates of the exponents are too
inaccurate to validate (or invalidate) some conjectures.

One should mention that several exact results, for
arbitrarily large n, which are unfortunately not help-
ful to determine the values of the exponents, have been
obtained with other techniques: random matrix model
methods [13,16–18] and an algebraic approach using the
Temperley-Lieb algebra [19,20] or the Hecke algebra [21].

Many models in statistical physics can be studied by
Monte-Carlo (or stochastic) methods. With these algo-
rithms, only a small set of configurations among all the
possible ones are generated. In principle, the expectation
of physical quantities (like energy or magnetization) with
a given law of probability (like the Boltzmann law in-
volving an external temperature) can be estimated from
these randomly generated samples, if their probabilities of
generation are known. For example, with the Metropolis
algorithm for classical spin systems [22], the probability
of generation is built to be equal to the Boltzmann law
and the average is done over the generated configurations
with equal weights. To bypass some difficulties (for ex-
ample when the phase space has many local minima with
high free energy barriers between them), it is possible, in
principal, to generate the random configurations with an-
other more adapted law and to correct this bias when the
average is done [23].
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Fig. 1. The M4 = 4 meanders of size 4. The road is the non-
self-intersecting loop. The semi-infinite river is the solid half-
line, starting at the source (black dot). The size is the number
of bridges. The winding number w is the number of arches
crossing the dashed half-line on the right side. The upper me-
anders have no winding (w = 0), but the lower have w = 2.

But for the meanders problem, the situation is quite
different: the phase space is not easy to built because the
number Mn of configurations is unknown and the only
known efficient method to draw a meander of size n is a
recurrence over n. Moreover the näıve way to use this re-
currence gives a distribution of meanders which is not flat,
and this default increases exponentially with n. This paper
presents a Monte-Carlo method which explores the mean-
ders with an almost flat distribution law. Furthermore the
bias is known and can be corrected exactly. Therefore, the
average can be done over meanders with equal probabil-
ities. In particular, better estimates of critical exponents
are obtained.

After Section 2 devoted to the definitions, and Sec-
tion 3 which explains the building of meanders by recur-
rence, Section 4 of this paper describes the Monte-Carlo
method. The results are presented and discussed in Sec-
tion 5.

2 Definitions

A meander of size n is a planar configuration of a non-self-
intersecting loop (road) crossing a half line (semi-infinite
river with a source) through n points (bridges). Two me-
anders are considered as equivalent if their roads can be
continuously deformed into each other, keeping the bridges
fixed: this is therefore a topological equivalence. We call an
arch each section of road between two consecutive bridges.
So a meander of size n has n bridges and n arches.

The number of different meanders of size n is denoted
by Mn. For example, M1 = 1, M2 = 1, M3 = 2, M4 = 4.
In Figure 1, the 4 meanders of size 4 are drawn. The Mn’s,
up to n = 29, can be found in references [14,15].

In previous articles [13,14,19], these objects were
called semi-meanders, to distinguish them from the case
where the line is infinite (river without source). In this pa-
per, the river is always a half-line and the word meanders
is used for convenience.

We can define [13,14,19] meanders with k connected
components, i.e. made of one river and k non-intersecting
roads. But, in this work, we do not include this gener-
alization and we keep k = 1. However the Monte-Carlo

method, used in this article, can be adapted without diffi-
culties to an arbitrary fixed k, and even for varying k with
a fugacity qk.

As explained with many details in reference [14], the
meander problem is absolutely equivalent to the problem
of the compact folding of a strip of stamps because each
meander of size n can be continuously deformed in such
a way that the “road” becomes a vertical line and the
“river” becomes a folded strip of n− 1 stamps. We prefer
to present our results with the meander representation
because the main recursion relation, described later, seems
more “natural” in this picture.

The meander problem has certain similarities with
two-dimensional self-avoiding walks: a meander is ob-
tained by intersecting a closed self-avoiding walk by a half-
line and keeping only the topological aspect. By analogy,
it is expected [16] that

Mn
n→∞∼ c

Rn

nγ
, (1)

where the estimates given in reference [14] are R = 3.50(1)
and γ ' 2.

The connectivity R can be reinterpreted as the average
number of ways of adding a bridge close to the source by
deforming an arch of a given large meander. Then ln(R)
is the entropy per bridge. The configuration exponent γ is
sensitive to the boundary conditions, for example whether
the road is closed or open, whether the river is infinite
or semi-infinite, straight or forked, whether the meander
is drawn on a planar surface, a sphere or a surface with
higher genus. Conversely, we expect that R remains the
same for all these boundary conditions.

It is similar in on-lattice self-avoiding walks problem
where the connectivity depends on the type of lattice
(square, honeycomb ...) and not on the boundary con-
ditions, whereas the “universal” configuration exponent
depends on the boundary conditions, but is not sensitive
to the small scale details of the lattice. For these reasons,
we think that the numerical value of R is valid only for
this particular model of meanders. But γ is expected to be
more “universal” and to keep its value in other variants of
the meander problem. Unfortunately, the numerical deter-
mination of γ is less precise than R, because nγ describes
the correction to the leading exponential asymptotic be-
havior Rn.

For a given meander m, the winding number w(m) of
the road around the source of the river can be defined
as the minimal number of intersections between the road
and a half (semi-infinite) line starting at the source and
extending the river on the opposite side. For an example,
(see Fig. 1). We define wn as the average of the winding
number

wn =
1
Mn

Mn∑
m=1

w(m) (2)

over all the meanders m of size n. We can see the winding
number as the topological end-to-end distance between
the source (right end of the river) and the infinite (left



O. Golinelli: A Monte-Carlo study of meanders 147

012345

Fig. 2. The height h(i) (resp. h(−i)) is the number of arches
over (resp. below) the segment i. For this meander of size 5,
{h(i)} = {0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 0} for i = −5, . . . 5. The area
is A = 13.

end of the river). Here the distance between two points
is simply the minimal number of arches which must be
crossed to go from one point to the other. By analogy with
the end-to-end exponent of self-avoiding walk, we expect
that

wn
n→∞∼ nν , (3)

where the estimate given in reference [14] is ν = 0.52(1).
If we study the meanders by leaving free the number k

of connected components, the problem is equivalent [14] to
a random walk on a semi-infinite line and can be studied
with usual methods of combinatorics. In particular, γ =
3/2, R = 4 and ν = 1/2 is the Brownian exponent. But,
by fixing k = 1, the problem is drastically more difficult
and the above values are, to our knowledge, not yet known
exactly.

For a given meanderm of size n, we label by i = 0, . . . n
each segment of river in-between two consecutive bridges,
from right to left. So the rightmost segment (with source)
is labeled 0, and the leftmost (semi-infinite) segment is
labeled n. We define the height h(i,m) as the number of
arches over the segment i, and h(−i,m) as the number
of arches below the segment i. An example is given in
Figure 2.

For the case i = 0, the both definitions h(+0,m) and
h(−0,m) are equivalent and equal to the winding number:
h(0,m) = w(m). From the definition, we have h(n,m) =
h(−n,m) = 0, h(i,m) ≥ 0 and h(i+ 1,m) = h(i,m)± 1.

For a given meander m of size n, we define the area
A(m) as

A(m) =
n∑

i=−n
h(i,m). (4)

For meanders of size n, it can be proved that the max-
imal area is (n − 1)2 + 1 for the two meanders with a
snail shape (where {h(i)} = 0, 1, 2, . . . , n − 2, n − 1, n −
2, . . . , 2, 1, 0, 1, 0} plus the symmetric meander), and the
minimal area is 2n−2 (resp. 2n−1) when n is even (resp.
odd) for the 2n/2−1 (resp. 2(n−1)/2) snake shaped mean-
ders characterized by h(i) + h(−i) = 2 for 0 < i < n. As
in the case of the winding number, we will consider the
average profile height

hn(i) =
1
Mn

Mn∑
m=1

h(i,m) (5)

(a)

(b)

Fig. 3. A meander of size n+1 is built from a meander of size n
with one labeled exterior arch by the following process. (a) Add
a new bridge on the left side of the river. Cut the labeled arch.
Stretch its two free ends. (b) Close the arch on the opposite side
by crossing the new bridge (possibly by bypassing the source
on the right). The inverse process is the following. (b) Open
the road at the place of the left most bridge. (a) Pull the two
free ends and close them on the opposite side to form a exterior
arch.

and the average area

An =
1
Mn

Mn∑
m=1

A(m) (6)

over all the meanders m of size n.

3 Recursion relation for meanders

In this section, we describe a recursive algorithm to enu-
merate and built all meanders of a given size n. Though
it was described in references [13,14], we prefer to recall
it in details, because the Monte-Carlo method is based on
this recursion.

We have different ways to built a meander of size n+1,
starting from a meander of size n. Our method consists in
adding a bridge on the left most part of the river (op-
posite to the source) and changing the road to cross this
new bridge. To keep this change minimal, only an exterior
arch is modified (an arch is exterior when no other arch
surrounds it).

Take a meander of size n (the parent) and choose (or
label) one of its exterior arch. By the process described in
Figure 3, a meander of size n + 1 (the child) is built. A
parent has as many different children as exterior arches.
By inverting this process, it appears that each meander
of size n+ 1 has one and only one parent. More precisely,
it is a one-to-one mapping between the meanders of size
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up-down
symmetry

Fig. 4. The tree of meanders up to n = 5. For n ≥ 4, only
a half of the tree is drawn by using the up-down symmetry.
Then M1 = 1, M2 = 1, M3 = 2, M4 = 4 and M5 = 10. Each
arrow represents a process as described in Figure 3.

n+1, and the meanders of size n with one labeled exterior
arch.

The starting point of the recursion is the unique me-
ander of size 1. By n − 1 successive applications of the
recursion process, every meanders of size n can be built.
As shown in Figure 4, the set of meanders is organized as
a tree. The root, at level 1, is the starting meander n = 1.
Each branch between a node on level n and a node on
level n + 1 represents a relation between a parent of size
n and its child of size n+ 1. Apart from n = 1, a meander
(or node) has several exterior arches, then several children
(or branches). Their number depends on the precise shape
of the parent and varies between 2 and n/2 + 1.

If we want to exactly enumerate the Mn meanders of
size n, the only method we know is to built and investi-
gate the tree up to the level n. In particular, we have not
found a direct recursion between the numbers Mn. The
number of children of each meander has a distribution
which seems to be erratic and the only way to know is the
examination of its shape. Then, to compute Mn, the work
is proportional to Mn. As the Mn’s increase exponentially,
the limits of the capabilities of the computers are rapidly
reached.

In references [14,15], the meanders numbers Mn up
to n = 29 are given. With a recent computer and more
tricks of programming, it is perhaps possible to obtain
n = 31 or 32. If the power of computers continues to
increase exponentially, the best we can expect with the
full enumeration without major improvement, is a linear
growth in n, with a rate of only one new size every 2 or 3
years. We have the feeling that this progress is too small
to change significantly our understanding of the meanders
problem.

In this article, we will investigate larger n with a
Monte-Carlo method increasing more slowly than an

exponential. But, this stochastic method gives results with
error bars and the interpretation is more delicate.

4 The Monte-Carlo method

As explained in the previous section, the exponential
growth of the computations with an exact enumeration
method limits the size of meanders around n ∼ 30. To
reach bigger n, it is then natural to try to study this prob-
lem with a Monte-Carlo (or stochastic) method.

As the set of the Mn meanders of a given size n is
too large to be fully explored, the general idea is to ran-
domly select a small subset. Then, the measurements are
done and averaged on the selected meanders. It gives an
estimator of the exact (but unknown) result, with a un-
known error. This error has two components: statistical
fluctuations and bias.

The statistical fluctuations can be reduced by inde-
pendently repeating the procedure many times. Then, we
obtain a histogram of the estimator, with an average and
a variance. Under the hypothesis of finite variance, the
statistical fluctuations of the average can be estimated by
usual formulas of statistics.

The bias is the difference between the exact result and
the mathematical expectation of the estimator. If it can
be exactly calculated, we subtract it from the estimator.
But, in general, an unknown part remains, which can not
be reduced by a better statistics. As explained below, by
adjusting parameters of the simulation, the bias can be re-
duced to become smaller than the statistical fluctuations.

In this section, we will first introduce the simplest algo-
rithm, the one-squirrel method. We will see that its statis-
tical fluctuations grow exponentially with n and they are
too big for n ≈ 30. Then, we present an algorithm, the
multi-squirrel method, for which the fluctuations increase
less rapidly.

4.1 The one-squirrel method

The method is based on the recursion relation (see Fig. 3),
with which the set of meanders is organized as a tree
(see Fig. 4). The Monte-Carlo squirrel has the following
stochastic behavior. It starts at the root of the tree (the
meander of size n = 1). It climbs into the tree. At each
level n, it stands on a node and makes some measure-
ments concerning the meander of size n, represented by
this node. Then the squirrel goes to the level n + 1 by
choosing at random one of the bn branches, starting from
this node. The squirrel stops at a prefixed level n = nmax.
This process constitutes one simulation.

The probability that the squirrel reaches a given mean-
der of size n is 1/

∏
l<n bl. This probability law is not flat

because the sequence of bl depends on the visited nodes.
As seen in Figure 4, for n = 5, the two meanders on the
left side have a probability 1/8 and the three on the right
side have 1/12. So, to correct this bias between meanders,
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the squirrel has a weight

qn =
n−1∏
l=1

bl, (7)

which is calculated during its climbing.
By noting 〈·〉 the mathematical expectation (over all

possible simulations), it is then obvious that 〈qn〉 = Mn,
because the sum runs over Mn possible paths and the
contribution of a given path is qn with probability 1/qn.

More generally, for some quantity Z (for example the
winding number), we wish to determine

Z =
Mn∑
m=1

Z(m), (8)

where Z(m) is the value of Z on the m-th meander of size
n. Each simulation gives, at level n, a measurement Z(s)
on the meander s reached by the squirrel and 〈qnZ(s)〉 =
Z which is the generalization of 〈qn〉 = Mn obtained with
Z = 1. Then

z = qnZ(s) (9)

is an unbiased estimator of Z (i.e. 〈z〉 = Z).
As usual in Monte-Carlo methods, several simulations

are made independently and we hope that the average z̄ of
all the measurements z is close to Z. Unfortunately, this
method does not work in practice, because the weight qn
is the product of bl. Although the distribution of each bl
is regular, the product of many random variables is not
self-averaging.

As the sum of ln(bl) is self-averaging (i.e. the observed
result is closed to its mathematical expectation when n
goes to infinite), most of the observed qn are not closed to
〈qn〉 and

〈qn〉
qn(observed)

∼ exp
∑
l<n

(ln〈bl〉 − 〈ln bl〉) (10)

increases like an exponential. Then the averages with
weight qn are dominated by exponentially rare events and
the statistical fluctuations become large. To keep the ob-
served average close to the mathematical expectation, the
number of simulations must increase exponentially with
n and fluctuations become too big for n ∼ 30 or 35. As
the difficulties increase exponentially with n (as for exact
enumeration), is is useless to increase the power of the
computer. We need a new algorithm.

4.2 Multi-squirrels method

We generalize the one-squirrel method, but now with a
population of S squirrels, which reproduce and die; S is a
fixed parameter during all the simulations. It is more sim-
ple to choose S as S = Mn0 , with at the starting point, a
squirrel staying at each node of level n0 (meanders of size

n0). In this work, n0 = 17 and we use the up-down sym-
metry to reduce the population to S = M17/2 = 1664094
squirrels.

The population evolves from level n to level n+ 1 by
the following process. Each squirrel i lives on a node si on
level n, connected to bi nodes on level n+1. It reproduces
and has bi children and each child lives on each one of these
bi nodes. The total number of children S′ =

∑S
i=1 bi is cal-

culated. The ratio Bn = S′/S is an estimate of Mn+1/Mn:
the average of the number of children per parent. To pre-
vent an exponential growth of the population and of the
needed computer memory and time, the total population
is keep constant by decimating the children: only S among
the S′ children survive. The choice is made at random with
uniform distribution. Then the probability of surviving is
1/Bn. This decimation is the single Monte-Carlo step of
the algorithm.

This process is iterated up to reach a prefixed level
n = nmax: it gives one simulation. Many independent sim-
ulations are done and averaged.

The particular case S = 1 gives the previous method
with one squirrel. But, as for S = 1, for every value of
S, the probability that a given meander is reached, is not
uniform. The nodes with small number of “brothers” or
“cousins” have always a small advantage. But this bias
becomes smaller when the population S is large. That is
the main improvement of this method. The limit S = ∞
corresponds to the exact enumeration.

To correct the bias, each simulation has a weight

qn =
n−1∏
l=n0

Bl (11)

and the averages runs over all the simulations with their
weight. More exactly, for some quantity Z, by keeping the
notations of equation (8), one simulation with S squirrels
gives S measurements {Z(si)} for i ∈ [1, S] with a weight
qn and the estimator

z = qn

S∑
i=1

Z(si) (12)

is unbiased, i.e.

〈z〉 = Z. (13)

We note that the case Z = 1 gives S〈qn〉 = Mn.
In order to prove equation (13), we define the opera-

tor δm characterizing a given meander m by δm(m′) = 1
when m = m′ and 0 otherwise. Then every operator Z
can be split up into Z =

∑
m Z(m)δm. As the expecta-

tion of a sum is always the sum of expectations, we have
to prove equation (13) for the operators δm only, which
becomes 〈qn∆m〉 = 1, where ∆m = 1 if the m-th meander
is occupied by a squirrel and 0 otherwise. Let p represent
the parent of m in the tree at level n− 1. The probability
that ∆m = 1 (i.e. m is occupied) is the product of the
probability ∆p that p was occupied at the level n− 1 and
the probability 1/Bn−1 that its child m survives after the
decimation process (n− 1→ n).
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By using equation (11) and averaging on the random
decimation (n− 1→ n) only,

〈∆m

n−1∏
l=n0

Bl〉 = 〈∆p

n−2∏
l=n0

Bl〉. (14)

It is a recursion relation between a given meander of size
n and its parent of size n−1. By iterating, we go down to
the ancestor at the starting level n0 for which ∆ = 1 and
the empty product of Bl is 1. It proves that 〈qn∆m〉 = 1
for every meander m of size n, and equation (13) is valid
for every operator Z.

As usual, many simulations are done and the measure-
ments are averaged with their respective weight. A priori,
it seems that this method has the same defect as the one-
squirrel method because the weight qn is the product of
many Bl, not self-averaging when n becomes large. The
ratio

〈qn〉
qn(observed)

∼ exp
n−1∑
l=n0

(ln〈Bl〉 − 〈lnBl〉) (15)

between the mathematical expectation and the most fre-
quently observed qn increases like an exponential. But, the
main improvement of the multi-squirrel method is that the
distribution of Bl becomes narrow when the population S
of squirrels is large. As Bl = S′/S, the fluctuations of
Bl are of order O(1/

√
S) because the number S′ =

∑
i bi

of children is the sum of S random variables. A Taylor
expansion of lnBl shows that ln〈Bl〉 − 〈lnBl〉 = O(1/S).

Then, with these simple arguments, we can hope that
the ratio (15) grows like 1 + O(n/S) and that problems
appear only when n becomes on the same order than S.
In our simulations, we observe that the fluctuations grow
with n faster than this optimistic prediction O(n/S). In
fact, the Bl’s are not independent and the exponential
function accentuates all deviations. Then we supervised
carefully the distribution of qn. When n is small, we see a
regular bell-shaped curve. But, when n increases, the dis-
tribution becomes asymmetric, with a long and irregular
tail for the large qn.

For example, for n = 400, with S = 1 664 094 squirrels,
the width σ of the distribution is only 12%, but we ob-
served rare events with a value of qn as big as three times
the average. However, in this case, their contribution to
the average and fluctuations is not yet problematic. But,
if we let n increase without control, rare events will dom-
inate and the results will become hazardous.

How to choose n and S? The näıve point of view is
to take n as bigger as possible. But, to make Ns indepen-
dent simulations with S squirrels of size n, the need for
computer memory is of orderO(nS) and the need for com-
puter time is of order O(n2SNs). If S is large enough, the
fluctuations are Gaussian and the error bars are of order
O(1/

√
SNs). As n is always limited, we will extrapolate to

study the asymptotic behavior. For that, it is of no help to
have large values of n if the error bars are too big. So for a
fixed computer time, we prefer accumulate good statistics
by limiting n ≤ 400. Finally for a fixed product SNs, we

prefer to take S = 1 664 094 as bigger as permitted by the
memory computer to avoid the problem of rare but large
fluctuations.

4.3 Bias for non-linear observables

In the previous section, we have seen how to obtain un-
biased Monte-Carlo estimates of the sum Z over all the
meanders of size n of some quantity Z (see Eq. (8) and
its notations). However we are more interested by the av-
erage Z/Mn over all the meanders of size n. For example,
the average winding number wn (see Eq. (2)) is obtained
when Z counts the winding. To evaluate R of equation (1),
we can analyze Mn+1/Mn; in this case, Z counts the ex-
terior arches. More generally, we want to use non-linear
combinations of Z and Mn.

With our Monte-Carlo method, we have seen that one
simulation gives a measurement z which is an unbiased
estimator: 〈z〉 = Z. With Ns independent simulations,
we call z̄ the usual average of the Ns measurements z;
its fluctuations are

√
Ns times smaller. The bar over the

symbols distinguishes the average of observed values by
Monte-Carlo method, from the (unknown) mathematical
expectation, marked with 〈. . . 〉. The same work can be
done with qn which is a unbiased estimator of Mn.

We must be careful with the Monte-Carlo estimate of
Z/Mn. For example, the average of the ratio z/qn gives
bad results. It is better to compute the ratio of the av-
erages z̄/q̄n. Indeed, with a Taylor expansion of z and qn
around their mathematical expectations Z and Mn, the
bias (defined as the difference of the mathematical expec-
tation 〈z̄/q̄n〉 and the target Z/Mn)

〈z̄/q̄n〉 − Z/Mn = O(1/Ns). (16)

It can be neglected if it is smaller than the stochastic fluc-
tuations. Usually, in Monte-Carlo simulations, this prob-
lem disappears because several millions of independent
measurements are done. But, in this work, the situation is
quite different. In fact, each simulation is a complex pro-
cess involving millions of squirrels, and the number Ns of
simulations is small.

Of course, we cannot compute this bias exactly, oth-
erwise we would have already subtract it from measure-
ments. But we can estimate it by the following process.
The set of simulations is divided into Ns/2p subsets, with
2p simulations each. In each subset, z̄/q̄n is computed. We
obtained Ns/2p independent values, one for each subset;
by usual formulae of statistics, we compute their average
E(p) and the error bars. This work is done for all integer p
between p = 0 (each subset contains only one simulation)
and p = log2Ns (only one set with all the Ns simulations).

Which value of p is the best? Following equation (16),
the bias of E(p) is expected to decrease like 1/2p. For small
values of p, we observe really a dependency of E(p) on
p: the bias is visible. But, for p > 5, variations become
smaller than statistical error bars: the size 2p of subsets is
sufficiently large to neglect the bias. But, if p is close to its
maximum, the number of subsets becomes very small and
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the error bars are not properly estimated. As in our work
Ns = 8192 = 213, we finally keep p = 7: the estimator
E(7) is computed with 64 independent subsets of 128 sim-
ulations each. This method was used for all quantities pre-
sented below. It is valid, not only for ratios like Z/Mn, but
also for non-linear functions like ln(Mn+1/Mn). It could
also be possible to use more complex estimators. For ex-
ample, the combination 2E(p) − E(p−1) cancels the order
1/2p of the bias.

5 Results

In this section, we describe the results obtained by our
Monte-Carlo multi-squirrels method. After several tests,
we used a population of S = 1 664 094 (= M17/2) squirrels
for meanders with size up to n = 400. To do Ns = 8192
independent simulations, we have used during 8 days a
parallel computer (the Cray T3E of the CEA-Grenoble)
with 128 processors (Dec-alpha at 375 MHz) and 13 Gi-
gabytes of total memory, equivalent to 24 000 hours of
workstation cpu time.

We have verified that the results are stable when S (the
population) increases. More exactly, the tests with smaller
S have larger error bars, but are compatible with results
and error bars obtained with the largest S. As explained
in the Section 4.2, we have carefully checked that S =
1 664 094 is sufficiently large to explore sizes of meander
up to n = 400.

5.1 Enumeration

We want to measure R and γ, which describe the asymp-
totic behavior of the number of meanders Mn ∼ c Rn/nγ
for large n. The entropy lnR can be estimated by
ln(Mn/Mn−1). But it appears that the sub-sequences M2n

and M2n+1 have an alternating sub-leading correction. We
have estimated it to be u(−1)n/(n lnn) with u = 0.5(1).
This alternating effect is dramatically amplified by the
ratio Mn/Mn−1. So it is better to consider

Ln =
1
2

ln(Mn/Mn−2), (17)

with a jump from n−2 to n. But even with this precaution,
the reader can still see on the following figures a small
parity effect. To estimate Ln, we have used the procedure
described in Section 4.3.

As we expect Ln ∼ lnR − γ/n for large n, by plot-
ting y = Ln versus x = 1/n, we can estimate lnR (limit
when x goes to 0) and the exponent γ (asymptotic slope).
In Figure 5, we have plotted the Monte-Carlo estimate
of Ln − ln 3.5 + 2/n versus 1/n for n between 50 and
400. We have arbitrarily subtracted the linear function
y = ln 3.5− 2x, to reduce the amplitude of y; we obtain a
figure where the small quantities 2− γ (remaining slope),
ln(R/3.5) (limit when x goes to 0) and curvature (devia-
tion to the expected linear behavior) are more visible. The
curvature remains small and a linear extrapolation gives a

Fig. 5. lnR and γ: plot of the Monte-Carlo estimate of Ln −
ln 3.5 + 2/n, for n between 50 and 400, versus 1/n. The limit
when x goes to 0 is ln(R/3.5), and the (negative) slope is 2−γ.
The error bars are not drawn; their maximum is 10−5, then
they are smaller than the symbols. A parity effect, between
the odd and even n, is visible. A linear extrapolation gives
R = 3.5019(2) and γ = 2.056(10).

limit between 0.0005 and 0.0006 with an estimated slope
0.056(10). Then

R = 3.5019(2) and γ = 2.056(10). (18)

With the assumption that the asymptotic behavior is
Mn ∼ c Rn/nγ , the conjecture γ = 2 is incompatible
with these simulations. But, we can try another asymp-
totic shape, for example

Mn ∼ c
Rn

nγ
1

lnα n
, (19)

by introducing a new exponent α. In Figure 6, we have
plotted Ln − ln 3.5 + 2/n (as in Fig. 5), but now versus
1/(n lnn). With this transformation of the x-axis, a linear
behavior corresponds to γ = 2 and the slope measures
−α. A linear extrapolation gives

R = 3.5017(2), γ = 2 and α = 0.25(5). (20)

with α compatible with the simple fraction 1/4.
How shall we choose between both results equa-

tion (18, 20)? We notice that the quality of the alignment
of points is the same in Figures 5, 6. In fact, it is very
difficult to distinguish between a logarithmic law and a
power law with such a small exponent, with statistical er-
ror bars and when the amplitude of lnn is small. In fact,
for n close to n′, the term α/(n lnn) looks like α′/n with
α′/α = 1/ lnn′ + 1/ ln2 n′. Then, for any choice of α not
too large, γ = 2.056 − 0.22α gives a class of acceptable
behaviors.

We have tried to use more sophisticated extrapolation
methods. For example, with a fixed jump i, (nLn − (n −
i)Ln−i)/i gives theoretically the same limit lnR but by
removing the term γ/n. Thus n2(Ln−Ln−i)/i gives a di-
rect estimate of γ. Unfortunately these kinds of derivative
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Fig. 6. lnR and α under the hypothesis γ = 2: the same
plot as Figure 5 but the x-axis is 1/(n lnn). The (negative)
slope is −α. A linear extrapolation gives R = 3.5017(2) and
α = 0.25(5).

amplify statistical errors, and the results are compatible
but less precise than the previous estimates.

So, with our numerical simulations, we cannot say
if a logarithmic factor is present or not. However, R =
3.5018(3), and we can exclude R = 3.5 and the conjecture
γ = 2 without logarithmic factor (α = 0).

5.2 Winding

We will present the Monte-Carlo results of the exponent
ν, which describe the asymptotic behavior of the average
winding number wn ∼ nν . To avoid problem with bias,
we have used the procedure described in Section 4.3. By
plotting ln(wn) versus ln(n), the asymptotic slope will be
a measurement of ν. In Figure 7, we have plotted y =
ln(wn + 1)− 1/2 lnn versus x = lnn. We have arbitrarily
considered ln(wn + 1) and not ln(wn) because wn + 1 is
less sensitive than wn to the finite size effects [14]. As the
main question is to know whether ν = 1/2 or not, we
have arbitrarily subtracted the linear function y = x/2.
Then the variation of y is reduced and we obtain a figure
where ν−1/2 (residual slope) and the curvature are more
visible. We see that the curvature is small and a linear
extrapolation gives ν = 0.518. As it is difficult to estimate
the errors with the data of Figure 7, we have also tried
more sophisticated quantities like

Gi(n) =
n

i
ln
(

wn + 1
wn−i + 1

)
(21)

which are discrete derivatives of ln(wn + 1) with step i.
They give a direct value for ν, but unfortunately the sta-
tistical fluctuations are amplified by this differentiation
and the uncertainty over ν is of order 0.002.

We have seen that, for the exponent γ, a behavior with
logarithmic correction is not excluded by the Monte-Carlo

2 3 4 5 6
ln n

0.03

0.05

0.07

0.09

ln
 (

w
n+

1)
 −

 1
/2

 ln
 n

winding exponent ν

Fig. 7. Winding exponent ν: plot of the Monte-Carlo results
of ln(wn + 1)− 1/2 lnn, for n between 8 and 400, versus lnn.
The slope is 0.018; it is a measurement of ν − 1/2. The error
bars are not drawn; their maximum is 3× 10−4, then they are
smaller than the symbols.

data. So we have tried to fit the winding number with

wn ∼ n1/2 lnα n. (22)

With this hypothesis, a plot of y = ln(wn + 1)− 1/2 lnn,
as in Figure 7, but now versus x = ln lnn would give
a straight line with slope α. But the curvature is much
stronger than that of Figure 7. So we dismiss this hypoth-
esis and conclude that

ν = 0.518(2). (23)

With the assumption that the asymptotic behavior is a
simple power-law, the Brownian value ν = 1/2 is incom-
patible with these simulations.

5.3 Probability distribution of winding number

We define the probability distribution Pn(w) of winding
number as the fraction of the meanders of size n with w
windings. We expect [14] the asymptotic scaling behavior

Pn(w) ≈ 2
wn + 1

f

(
w + 1
wn + 1

)
(24)

with a scaling function f(x), where wn is the average wind-
ing number. With the factor 2, the integral of f is nor-
malized to 1 because w and n are integers with the same
parity. In Figure 8, we plot y = (wn + 1)Pn(w)/2 versus
x = (w + 1)/(wn + 1) for different values of n. To define
the scaling variable x, we prefer to take w + 1 instead of
w to reduce finite size effects.

We see that the points accumulate on a smooth curve,
which represents the scaling function f(x). By analogy
with the end-to-end distribution for polymers, we ex-
pect [14] a power law behavior, f(x) ∼ xθ, for small x,
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Fig. 8. Plot of (wn + 1)Pn(w)/2 versus (w + 1)/(wn + 1) for
n = 30, 40, 50 . . . 400. The points accumulate on a scaling
function f . The error bars are not drawn; their maximum is
6× 10−4.

Fig. 9. Plot of the scaled height n(hn(i)+1)/(An+2n) versus
the scaled coordinate x = i/n. Only two set of data (n = 40
and 400) are shown in order not to overload the figure. The
points accumulate on a scaling function ρ(x). We can see small
deviations for x = 0 and x = 1, which are analyzed in the text.

and a behavior f(x) ∼ exp(−const× xδ), for large x. Our
data give the estimates

θ = 1.7(1) and δ = 2.3(1). (25)

To obtain a better precision, it would require to have
larger values of n.

5.4 Height and area

We are interested by the asymptotic behavior, for large
size n, of the average area An (see Eq. (6)) and average
height hn(i) (see Eq. (5)).

The label i is the “horizontal” coordinate and varies
between −n and n. So, we introduce the scaled variable

Fig. 10. Log-log plot of the height hn(n−i) versus the distance
to the boundary i for various sizes n. The points accumulate
on a limiting curve, which can be fitted by iφ with φ = 0.64(2).

x = i/n, with −1 ≤ x ≤ 1. We expect [14] that

hn(nx) ∼ An
n
ρ(x) (26)

for large n by fixing x, where ρ(x) is a scaling function
with integral normalized to 1. In Figure 9, we have plotted
y = n (hn(i)+1)/(An+2n) versus x = i/n for various size
n. Only the positive i are shown because hn(i) is symmet-
ric after summing over all the meanders. More precisely,
we have plotted the average of {hn(i) + hn(−i)}/2 over
the Monte-Carlo samples of meanders, which is equiva-
lent to the average of hn(i) over these samples, plus those
obtained by the left-right symmetry (i → −i). As in the
previous figures, we prefer to take (hn + 1) and (An + 2n)
to reduce finite size effects.

We see that, for 0 < x < 1, the points accumulate
on a smooth curve, which represents the scaling function
ρ(x). This shape is not a half-circle, as it would be for a
random-walk on a semi-infinite line [14].

As hn(0) is the winding number wn for the particular
case x = 0, equation (26) can be valid only if hn(nx) scales
as nν with the same exponent ν for all x. Consequently,
the area An scales as nν+1. In a previous section, we have
numerically determined ν = 0.518(2) by extrapolation of
wn = hn(0). The same work with hn(n/2) and An gives
ν = 0.517 for both, compatible with the previous esti-
mates, but less precise because the finite size effects are
stronger.

In Figure 9, small deviations appear between the
curves for n = 40 and 400, at the boundary (x ' ±1)
and in the middle of the meander (x ' 0).

In order to understand why finite-size effects are im-
portant near the boundary, Figure 10 is a plot of hn(n− i)
versus i, with various n. Clearly, when n is large, curves
accumulate on a limiting curve

h̃(i) = lim
n→∞

hn(n− i). (27)
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Fig. 11. Plot of the hn(i)−hn(0) versus i for small i, near the
middle of meander, for various size n. By symmetry, only the
positive i are drawn. As the heights hn(i) are shifted by hn(0)
and not scaled, we observe effects smaller than the asymptotic
behavior nνρ(0). The points accumulate on a limiting curve

ĥ(i).

As this function can be fitted by a straight line on this
“log-log” plot, we define a new exponent φ by

h̃(i) ∼ iφ with φ = 0.64(2) (28)

when i is large. As by construction, hn(n) = 0 and hn(n−
1) = 1 for all n, h̃(0) = 0 and h̃(1) = 1 satisfy exactly
equation (28).

If we set i = ny, by using equation (28) valid when i
is fixed, we obtain hn(n− i) ∼ (ny)φ. On the other hand,
by using equation (26) which is valid when y is fixed, we
obtain now nνρ(1− y). As the exponents ν and φ differs,
these two regimes are incompatible and the behavior of
hn(n− i) depends on the order in which n and i go to in-
finity. In particular, the domain of validity of equation (28)
is reduced to the single point x = 1 for equation (26). That
explains why the rightmost dots (i ∼ n) in Figure 9 for
the small size are not superimposed on the curve obtained
for the large size.

Here, the exponent φ is the surface critical exponent,
while ν is the bulk critical exponent. Near the boundary,
h(i) is small and the condition h(i) ≥ 0 limits appreciably
the fluctuations toward the bottom. This effect is so strong
that the exponent is changed and φ > ν. This situation is
reminiscent of other critical phenomena [24], like the self-
avoiding walk near a surface. Our result is to be contrasted
with the case of a random walk on a semi-infinite line for
which the surface exponent keeps its Brownian value 1/2.

Finite-size effects observable near the middle of mean-
der (x ∼ 0) can be explained with Figure 11, which is a
plot of hn(i) − hn(0) versus i for small i with various n.
Clearly, when n is large, curves accumulate on a limiting
curve

ĥ(i) = lim
n→∞

(hn(i)− hn(0)). (29)

If we make the hypothesis that the behavior of ĥ(i) is com-
patible with equation (26) by inverting the limits n large

and x small, the consequences would be that ρ(x) has a
cusp at x = 0 with a infinite derivative ρ(x) ∼ ρ(0) + xν

when x is small, and ĥ(i) ∼ iν . But this power law behav-
ior of ĥ(i) is not observed. Then the asymptotic behavior
of hn(i) with i fixed and n large is given by equation (26),
i.e. nνρ(0), plus finite corrections of order ĥ(i).

This cusp is an another boundary effect since the point
i = 0 is the source of the river. Let us consider three
consecutive heights {h(i−1,m), h(i,m), h(i+ 1,m)} for a
given meander m. By definition, h(i+ 1,m) = h(i,m)±1.
Then, for a generic i, the couple of its neighbors can have 4
respective values {h(i−1), h(i+1)} = {h(i)±1, h(i)±1}.
But, for the special case i = 0, the situation h(−1) =
h(1) = h(0) − 1 happens only if a single arch connects
the first bridge (near the source) to itself, by drawing a
little circle around the source, without visiting the other
bridges. This is forbidden if we insist in having only one
connected component. In other word, the neighborhood of
the source limits the fluctuations of h(0) toward the top.
In particular, for every meander, h(0) ≤ {h(−1)+h(1)}/2.
That explains why, on average, h(0) < h(1).

To understand why h(1) < h(2), it is mandatory to
consider more complex forbidden situations for {h(−2),
h(−1), h(0), h(1), h(2)}. For example, a circle connecting
bridges 1 and 2 with an upper and a lower arch, with
h(±1) = h(±2) + 1, is forbidden.

More generally, for a given i, the presence of the
source forbids the systems of arches connecting the bridges
{1, 2, . . . , i} with a closed road without visiting the other
bridges {i+ 1, . . . }. Qualitatively, it is a repulsive “force”
which favors the connection of bridge i with bridges j > i
and gives a concave shape for small i.

As the forbidden situations are more and more com-
plex when i becomes large, their statistical effects decrease
and this repulsive force has a finite range. In the end, the
summation over all forbidden situations gives finally this
cusp with a finite amplitude described by ĥ(i).

6 Conclusion

In this paper, we have presented a Monte-Carlo method to
investigate a phase space described by a deterministic but
irregular tree (i.e. the number of branches at each node is
not fixed). With a näıve random climbing on the tree (the
one-squirrel method), the probability of a path depends on
the number of branches encounter at each node. For the
meanders problem, the ratio between extremal weights in-
creases exponentially with the size: consequently the most
part of the computer time is devoted to generate configu-
rations with small weight, and only a exponentially small
number of configurations with high weight contribute ef-
ficiently to the average.

With the multi-squirrel method, the distribution be-
comes almost flat: the bias, i.e. the ratio between ex-
tremal weights increases very slowly and never exceeds 3
in our simulations. Moreover, this bias is exactly known
during the simulation, then it can be corrected to average
over all meanders with a uniform distribution. As usual
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with Monte-Carlo simulations, results suffer from statisti-
cal fluctuations which decrease, in the best case, like the
square root of the computer time.

After a simulation on a parallel computer with 3 years
of cpu time in single processor units, results with small
errors bars have been obtained for meanders up to size
n = 400. Under some hypothesis inspired by the analogy
with random walks problems, large n extrapolation can
be done for the enumeration (see Eq. (18) and Fig. 5), for
the distribution (see Eq. (25) and Fig. 8) and the average
of the winding number (see Eq. (23) and Fig. 7) and the
shape (see Sect. 5.4) of meanders.

From a Monte-Carlo point of view, the proposed al-
gorithm can be used, in principal, for any combinatorial
problem described by a tree: the essential ingredient is to
know, for a given node, the number of branches. However
algorithms are rare in this kind of problems and better
variants or other algorithms could be without doubt in-
vented.

About the meanders, with these estimates, it appears
that the critical exponent are not simple fractions as 1/2
or 7/2, as conjectured by previous studies [16]. Of course,
Monte-Carlo simulations cannot determine the exact val-
ues, but can confirm or invalidate analytical proposals,
while waiting for a rigorous solution.

We thank L. Colombet, P. Di Francesco, E. Guitter and R.
Napoleone for stimulating discussions, critical reading of the
manuscript and help for an efficient parallelization of the com-
puter program.
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